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The Determinant Method and Quantum 
Simulations of Many-Body Effects in a 
Single Impurity Anderson Model 

J. E. Gubernatis, 1 T. C. Olson, 2 D. J. scalapino, 3 and R. L. Sugar 3 

We present a short description of a quantum Monte Carlo technique that has 
proved useful for simulating many-body effects in systems of interacting fer- 
mions at finite temperatures. We then report our preliminary results using this 
technique on a single impurity Anderson model. Examples of such many-body 
effects as local moment formation, Kondo behavior, and mixed valence 
phenomena found in the simulations are shown. 
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1. I N T R O D U C T I O N  

Using a Hubbard-Stratonovich type of transformation, certain interacting 
fermion problems can be expressed in terms of noninteracting fermions 
coupled to a space-time dependent classical field which is functionally 
integrated over. When the fermion degrees of freedom are integrated out, 
one is left with a problem of integrating over configurations of the 
Hubbard-Stratonovich field. This latter problem can, in principle, be 
approached using Monte Carlo techniquesJ 1) Here, in the context of the 
single impurity Anderson model, (3) we give a brief description of one 
method (2) that has been used to carry out such Monte Carlo simulations 
and present preliminary results. 
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The Hamiltonian for this model has the form 

H = - t  ~ (ci+Cjs+CfsC,~)+V~(c+d~+d+co,) 
( i j ) s  s 

+ Ea(na, +ha+) + UndTna+ (1) 

+ is the fermion creation operator for an electron in an "s orbital" Here Cis 
on site i with spin s, d + is the corresponding operator asociated with a 
local "d orbital" on impurity site o, which has energy Ea. The s and d 
orbitals are hybridized by an overlap V, and if two electrons occupy the d 
orbital, there is a Coulomb interaction U. A nearest-neighbor pair of lattice 
sites is denoted by ( / j ) .  The goal of our simulations is to provide further 
insight into the physics of the local moment, Kondo, and valence fluc- 
tuation regimes known to exist for this model, and we will show results of 
our efforts to simulate these regimes. 

2. BASIC IDEA 

What we want to evaluate are thermodynamic averages of different 
physical quantities. Such an average for a typical quantity A is defined by 

( A )  = tr Ae-~H/Z 

where the partition function Z is 

Z = t r e  ~H 

(2) 

(3) 

The problem is in general the inability not only to exponentiate the quan- 
tum Hamiltonian but also to perform the required trace. To mitigate these 
problems, we make an approximation that introduces additional degrees of 
freedom and an extra (finite) dimension into the problem. The 
approximation is controlled in the sense that the error in principle can be 
made as small as we like. For  each configuration of these new variables the 
approximation corresponds to replacing the original Hamiltonian by an 
effective one for which we can perform the trace over the original (i.e., the 
fermion) degrees of freedom. Symbolically, we have 

(A) - - -  
tr~ tr Ae -~h[~] 
tr~ tr e -~hE~3 (4) 

tr~ z[a](z[a] -1 tr Ae-~hE~3) 
t r ~ z [ a ]  

tr~ A(a) z[a] 
tr~ z [ a ]  (5) 
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where a represents a configuration of the new degrees of freedom and 

z[o-] = tr e -f~h[`~] (6) 

is the partition function of the configuration-dependent effective 
Hamiltonian. It is the average represented by (5) that is done by the Monte 
Carlo methods; however, instead of using the standard statistical 
probability density e ~h/Z we now must use z[a] /Z .  It is in z[a]  where 
the quantum mechanical details are embodied. 

3. S O M E  DETAILS 

3.1. 'The Trot ter  A p p r o x i m a t i o n  

To add the details of the method, we focus on the calculation of the 
partition function. The first step is to introduce a small parameter ~ into 
the problem. Because the Hamiltonian commutes with itself, we can write 

Z = t r e  ~n 

= tr e - m e - m ' " e - T n  (7) 

with r = filL where L, the number of e - m  factors, is the argument of the 
trace. We now approximate e ~n. TO do this we note that 

H = H o + HI 

where H0 is the noninteracting part of the Hamiltonian, which is quadratic 
in the fermion degrees of freedom, and H~ is the interacting part, which for 
the models we consider is quartic in the fermion degrees of freedom. Since 
Ho and HI do not commute we use the Trotter  approximation (4) to write 

e - T H  ~ e r176 O(T 2) (8) 

Hence, in principle, we can make this a very good approximation by 
making ~ small. Having done this, we have a piece e x p ( - v H o )  , which 
generally is easily evaluated, but are still faced with exponentiating HI, 
which is in general difficult to evaluate. Fortunately, this task is easily 
accomplished for certain models by using a form of the Hubbard -  
Stratanovich transformation. (5) 

3.2. The Hubbard-St ra tanov ich  Transformat ion  

This transformation is best illustrated by an example for which we 
chose the single impurity Anderson model Hamiltonian (1). For  this model 

HI = Und~ nd~ (9) 
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The transformation uses the following identity (6) 

e ~c~'~T'd+-=--I ~, e_~j~(.~T_.Ul)_~i(n~+.d+)/2 (10) 
2 (~-- ++_1 

with cosh v J =  e ~v/2, which is applied to each site in (9) and to each factor 
in (7). For  the single impurity problem there is only one lattice site to 
which the transformation is applied. If there were a sum over such sites and 
the sites were arranged in a two-dimensional lattice, then at each site we 
have an Ising spin at L sites in a third dimension. From more formal 
approaches to the problem this third dimension corresponds to an 
imaginary time axis obtained by the change of variable i t=(kT)  -1. 
Additional factors in (7) then correspond to different time steps of the 
problem. For  convenience in the following we will use this "time" ter- 
minology. 

From (10) we see that the term in (8) that is quartic in the creation 
and destruction operators has been replaced by one that is quadratic: The 
orginal H in the lth factor of (7) has been replaced by an H(l) that is non- 
interacting, and hence its exponential form is treatable by standard means. 
In particular we define 

H(I)  - S ci + h  (l)c j, 
ijs 

We can now rewrite (7) as 
Z =  tr~ tr e - r H ( L )  e - z H ( L  1) . . .  e - - r H ( l }  

and because of the quadratic form of H(l) we can trace out the fermion 
degrees of freedom to obtain 

Z = t r .  de t ( I+Bi .BL 1"" B1) 

= t r ,  de t ( I+  BL I""B1BL) etc. 

= tr~ z [ a ]  

where 
B t = e-~h(~) 

and 

z [ a ]  = d e t ( I + B , . . . B  IBL. ' 'B,+I) (11) 

is the partition function associated with a given configuration of the Ising- 
like variables. 

3.3.  T h e  G r e e n ' s  F u n c t i o n  

For every time step l, the Monte Carlo procedure consists of deciding 
whether to accept or reject a spin flip at each site to which the Hubbard-  



Many-Body Effects in a Single Impurity Anderson Model 835 

Stratanovich transformation was applied. The decision is generally based on 
the Metropolis (3) or heat bath algorithms; however, in contrast to classical 
statistical mechanics where one examines the ratio 

e-BH[~']/e --~H[o] 
we must examine 

zE~']/z[o] 
The evaluation of z [ a ]  generally involves LN 3 multiplications where N is 
the number of degrees of freedom in the original problem. To reduce the 
computation time, the following alternatives have been devised(i): The 
cyclic properties of the products of the Bs presented in (11 ) are used so that 
at t h e / t h  time step 

zEa] = d e t ( I + B t + ~ . . .  BIBL" 'B~)  (12) 

Then, for a new configuration we write the new Bt as BzAz. Hence 

z [ a ' ]  de t ( I+Bt+l . . .B1B1 . . .B tA t )  

z [a ]  de t ( I+  Bt+ 1"" B1BL ' "  Bz) 
Defining 

g, = ( I  + B,  + 1 " "  B I B L " "  Bl)  -1 ( 1 3 ) 

we can reexpress the ratio by 

det [ I -  ( g , -  I ) ( A , -  I)] (14) 

When the interactions are short-ranged, A t - I  is a sparse matrix and (14) 
can be directly evaluated for the single impurity Anderson model in terms 
of the local matrix elements of gt with operations of order 1. 

On the surface, gt requires as many operations O(N 3) to compute as 
the original determinant. However, there are several useful relations (2) 
which allow the operation count to be reduced. The first generates a new g't 
from the old gl whenever the configuration changes. Starting with 

g~=(I+Bz+I . . .B1BL. . .B tAz)  1 

one can show (2) 
g', = g , -  ( I -  g , ) (A , -  I) g; (15) 

Because of the sparseness of (At-- I) the equation can usually be solved for 
g~ in O(N 2) operations. 

We also have a procedure (2) to go from one time to another more 
efficiently than by constructing the appropriate g from (13). It is 

gl+ 1 = BI gzBT 1 (16) 

822/43/5-6-8 
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The main point is, after having made gl via (13) at the very start of the 
simulation, we in principle can generate all other gts in considerably fewer 
operations via (15) and (16) than by (13). In practice, errors buildup and 
so, to maintain an acceptable level of precision, (13) is used, from time to 
time, to control these errors. 

The functions gt instead of z[a] are the principal quantities needed 
and computed in the simulations. This in some sense is a fortunate 
circumstance, for one can show (2~) that 

and 

E g , ] ~  = (,~,(z) , :S ( z ) )  

( n , ( Z ) )  = 1 - [g,] , ,  

One can also find specific expressions (1'7) for the unequal time Green's 
functions in terms of products of the Bzs. 

3.4. Computed Quantities 

The Green's function is the principal result obtained from our 
simulation. With it and the use of Wick's theorem, we are able to compute 
relevant thermodynamic and many-body correlation functions. Quantities 
computed by this method include: the energy, specific heat, magnetic sus- 
ceptibility, etc. To illustrate the procedure, we will now sketch the com- 
putation of the average energy for the single impurity Anderson 
Hamiltonian, 

E = ( H )  

From (8) we see that averages like (%+ @,) and (ndtna~) are needed. Since 
in (8) i t  j, (ci+~Cjs) = -(CisCf~ ), which is just g~.. To do the other type of 
average, we use Wick's theoremt8): 

(nat rid, ) = (dd) ddT da~ d.,  ) 

_ + d + -- ( dd~ ddT ) ( dJ~ da; ) - ( dd, dd+T ) ( dd T dd+~ ) 

The averages in the first term on the right-hand side are just 
(nis) = 1 - g~. Those in the last term are zero! The Hubbard-Stratanovich 
transformation took the term with explicit interactions between opposite 
spins and replaced it with one that produces an effective Hamiltonian block 
diagonal in s. For  purposes of computing ( da td~ )  etc. there are no 
correlations between spins, and so such averages are zero. The spin 
correlations remain only implicitly: the spins interact through the Ising 
spin field which may be regarded as an imaginary-time dependent, external 
field that is summed over all possible configurations. 
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4. RESULTS 

To date our simulations of the single impurity Anderson model have 
been for a one-dimensional chain appropriate to a quasi one-dimensional 
material. In this case the band energies resulting from the hopping term in 
the Hamiltonian are ek = - 2 t  cos k. The same simulation code gives results 
for two- and three-dimensional systems when ek is suitably altered. For 
example, a 16-site chain has 16 ek states and its running time is equivalent 
to a 4 x 4 two-dimensional lattice. A 4 x 4 x 4 three-dimensional lattice has 
a running time equivalent to a 64-site, one-dimensional chain. 

For the model we have computed a variety of physical quantities, 
including energy, specific heat, and d-orbital susceptibility 

( .  

= Jo dr( > Zd (17) 

the magnitude of the d-orbital magnetization 

m a =  ( I n a t - n < l >  

and the d orbital occupation 

Nd = (ndT + rid* > 

1 , 0  ~ t i ] , I J E 

Fig. 1. 

0.8 

0.6 

0.4 

0.2 

S 

0 . 0  ~ I ~ I ~ I ~ J 

0 2 4 6 8 10 

The impurity susceptibility kTZd for the symmetric model as a function of ft. 
Ed= -U/2, V= 1, and the different curves are for N = 4 ,  8, 12, and 16. 
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We also have calculated the spatial spin correlation function 

C( i) = ((nit - ni+)(ndi -- ndT ) ) (18) 

and the charge density correlations 

D(i) = ((nit § niz)(nat + nd~)) (19) 

These latter quantities are extremely difficult to compute by renor- 
malization group (9/ and Bethe-ansatz ~1~ approaches to the related 
problems. 

In Figs. 1-3 we know kTZd as a function of fl where Zd is in units of 
the Bohr magneton squared and kT in units of the halfband width 2t. 
Figure 1 is for a symmetric model where U = - E  J2 = 1. Such models have 
particle-hole symmetry and can exhibit local moment  formation and 
Kondo peaks in kTxa. For  our choice of parameters and range of fl we 
clearly see the growth in kTXd associated with local moment  development. 
Our kTZd results are consistent with local moment  development implied by 
our Md calculations, Mixed valence behavior is illustrated in Fig. 2 by kTZd 
obtaining a low temperature values of ~-. Again Md, as well as Na, 
calculation also implies mixed valence behavior. The Kondo  peak in the 

1,0 , i , ~ , ~ , i , 

Fig. 2. 
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The impuri ty susceptibility kTzd for a function of ft. U = i, E a = 0, V =  1, and the dif- 

ferent curves are for N = 4 ,  8, 12, and 16. 
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Fig. 3. The impurity susceptibility kT)~d for an asymmetric model as a function of ft. U =  1, 
Ea=0.1,  V=  1, and the different curves are for N = 4 ,  8, 12, and 16. 

susceptibility is shown in Fig. 3. Besides the peak, the freezing out of the 
local moment, indicated by kTza tending to zero as fl is increased, is also 
seen. Similar behavior might occur for the case shown in Fig. 1; however, 
we are unable to carry the simulation to fl large enough so see this decease. 

We also observed RKKY and Friedel-like oscillations in the spatial 
spin (18) and charge density (19) correlation functions. For  the spatial 
spins a negative correlation between the spin at the impurity site and at site 
0 exists. For  both correlation functions the amplitude increases as the tem- 
perature decreases, decreases as the distance from the impurity increases, 
and alternates in sign from site to site. For  a value of U = 1, we observed 
that as V increases the spatial spin correlations become stronger even 
though the measured magnetic moments become smaller. These trends 
were more pronounced for an asymmetric model (Ed-- 0) than for the sym- 
metric model (Ed = --0.5). The charge density correlation function showed 
the same trends with V, but the size of the effect was approximately the 
same for both the symmetric and asymmetric cases. To a good 
approximation, the charge at the impurity site is uncorrelated with the 
charge at the lattice sites. 
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5. S U M M A R Y  

We presented a brief description of the determinant method and repor- 
ted our initial findings on using the method to simulate many-body effects 
in a single impurity Anderson model. We have successfully simulated local 
moment formation, Kondo peaking in the susceptibility, and mixed valence 
behavior and have presented calculations of the impurity susceptibility that 
illustrate these effects. We have also observed RKKY and Friedel-like 
oscillations in the spatial spin and charge density correlation functions. 
Our full results will be reported elsewhere. 
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